| Non-Rationalised NCERT Books Solution | ||||||
|---|---|---|---|---|---|---|
| 6th | 7th | 8th | 9th | 10th | 11th | 12th |
| Content On This Page | ||
|---|---|---|
| Example 1 to 4 (Before Exercise 8.1) | Exercise 8.1 | Example 5 to 9 (Before Exercise 8.2) |
| Exercise 8.2 | Example 10 to 17 - Miscellaneous Examples | Miscellaneous Exercise on Chapter 8 |
Chapter 8 Binomial Theorem
Welcome to the solutions guide for Chapter 8: Binomial Theorem. This chapter unveils a remarkably powerful and elegant formula in algebra that provides a systematic method for expanding binomial expressions raised to any positive integer power. A binomial is simply an algebraic expression with two terms, like $(a+b)$ or $(2x - 3y)$. While expanding $(a+b)^2$ or $(a+b)^3$ is manageable through direct multiplication, performing this expansion for higher powers like $(a+b)^7$ or $(a+b)^{10}$ becomes increasingly tedious and prone to errors. The Binomial Theorem offers a concise and efficient formula to directly determine the terms and coefficients of such expansions, revealing beautiful patterns involving combinations and powers. Understanding this theorem is crucial not only for algebraic manipulation but also for its applications in probability, statistics, calculus, and various areas of science and engineering.
The cornerstone of this chapter is the statement of the Binomial Theorem itself. For any binomial expression $(a+b)$ and any positive integer $n$, the theorem states:
$(a + b)^n = {}^nC_0a^n b^0 + {}^nC_1a^{n-1}b^1 + {}^nC_2a^{n-2}b^2 + \dots + {}^nC_ra^{n-r}b^r + \dots + {}^nC_na^0b^n$
This can be written more compactly using summation notation:
$(a + b)^n = \sum\limits_{r=0}^n {}^nC_r a^{n-r} b^r$
Here, ${}^nC_r = \frac{n!}{r!(n-r)!}$ represents the binomial coefficient, which corresponds to the number of ways to choose $r$ items from a set of $n$ (a concept from permutations and combinations). The solutions provided demonstrate the step-by-step application of this theorem to expand various binomial expressions, such as $(x+y)^4$, $(2x - 3y)^5$ (where $b = -3y$), or numerical expressions like $(101)^3 = (100+1)^3$.
Key properties of the binomial expansion, highlighted in the solutions, include:
- The total number of terms in the expansion of $(a+b)^n$ is always $\mathbf{n+1}$.
- The powers of the first term '$a$' decrease from $n$ down to 0, while the powers of the second term '$b$' increase from 0 up to $n$.
- The sum of the powers of $a$ and $b$ in each term is always equal to $n$.
- The binomial coefficients (${}^nC_r$) are symmetric: ${}^nC_r = {}^nC_{n-r}$. For small values of $n$, these coefficients can also be conveniently found using Pascal's triangle.
A significant practical application involves finding specific terms within the expansion without calculating the entire series. The formula for the general term, which represents the (r+1)th term in the expansion (starting with $r=0$ for the first term), is crucial:
$T_{r+1} = {}^nC_r a^{n-r} b^r$
Solutions demonstrate using this formula effectively to:
- Find a specific term (e.g., the $4^{th}$ term, which corresponds to $r=3$).
- Find the term independent of $x$ in expansions involving variables (e.g., in $\left(x^2 + \frac{1}{x}\right)^{12}$), achieved by finding the value of $r$ for which the power of $x$ in $T_{r+1}$ simplifies to zero.
- Determine the coefficient of a specific power of $x$ (e.g., the coefficient of $x^5$).
The process for finding the middle term(s) in the expansion is also explained. The approach depends on whether the exponent $n$ is even or odd:
- If $n$ is even, there is one middle term: the $\left(\frac{n}{2} + 1\right)^{th}$ term (found using $r = \frac{n}{2}$).
- If $n$ is odd, there are two middle terms: the $\left(\frac{n+1}{2}\right)^{th}$ and the $\left(\frac{n+1}{2} + 1\right)^{th}$ terms (found using $r = \frac{n-1}{2}$ and $r = \frac{n+1}{2}$).
Solutions illustrate these calculations. Additionally, the theorem can be used for approximations, for example, approximating $(0.99)^5 = (1 - 0.01)^5$ by using the first few terms of its binomial expansion. These detailed solutions provide the necessary framework for proficiently applying the Binomial Theorem.
Example 1 to 4 (Before Exercise 8.1)
Example 1: Expand $\left( x^{2} +\frac{3}{x}\right)^{4}\;,\; x \neq 0$
Answer:
Given:
The expression to expand is $\left( x^{2} +\frac{3}{x}\right)^{4}$, where $x \neq 0$.
To Find:
The binomial expansion of the given expression.
Solution:
We use the Binomial Theorem, which states that for any positive integer $n$:
$(a+b)^n = \sum_{k=0}^{n} {^nC_k} a^{n-k} b^k$
In this problem, we have $a = x^2$, $b = \frac{3}{x}$, and $n = 4$.
The expansion is:
$\left( x^{2} +\frac{3}{x}\right)^{4} = {^4C_0}(x^2)^4\left(\frac{3}{x}\right)^0 + {^4C_1}(x^2)^3\left(\frac{3}{x}\right)^1 + {^4C_2}(x^2)^2\left(\frac{3}{x}\right)^2 \ $$ + {^4C_3}(x^2)^1\left(\frac{3}{x}\right)^3 + {^4C_4}(x^2)^0\left(\frac{3}{x}\right)^4$
Let's evaluate the binomial coefficients:
$^4C_0 = 1$, $^4C_1 = 4$, $^4C_2 = \frac{4 \times 3}{2} = 6$, $^4C_3 = 4$, $^4C_4 = 1$.
Now, we compute each term of the expansion:
Term 1: $^4C_0(x^2)^4\left(\frac{3}{x}\right)^0 = 1 \cdot x^8 \cdot 1 = x^8$
Term 2: $^4C_1(x^2)^3\left(\frac{3}{x}\right)^1 = 4 \cdot x^6 \cdot \frac{3}{x} = 12x^5$
Term 3: $^4C_2(x^2)^2\left(\frac{3}{x}\right)^2 = 6 \cdot x^4 \cdot \frac{9}{x^2} = 54x^2$
Term 4: $^4C_3(x^2)^1\left(\frac{3}{x}\right)^3 = 4 \cdot x^2 \cdot \frac{27}{x^3} = \frac{108}{x}$
Term 5: $^4C_4(x^2)^0\left(\frac{3}{x}\right)^4 = 1 \cdot 1 \cdot \frac{81}{x^4} = \frac{81}{x^4}$
Combining all the terms, the final expansion is:
$x^8 + 12x^5 + 54x^2 + \frac{108}{x} + \frac{81}{x^4}$
Example 2: Compute (98)5 .
Answer:
To Compute:
The value of $(98)^5$.
Solution:
We can express 98 as a difference of two numbers that are easy to work with, such as $100 - 2$. Then we can use the Binomial Theorem.
$(98)^5 = (100 - 2)^5$.
Using the Binomial Theorem for $(a-b)^n$ with $a=100$, $b=2$, and $n=5$:
$(a-b)^5 = {^5C_0}a^5 - {^5C_1}a^4b + {^5C_2}a^3b^2 - {^5C_3}a^2b^3 + {^5C_4}ab^4 - {^5C_5}b^5$
The coefficients are: $^5C_0=1, ^5C_1=5, ^5C_2=10, ^5C_3=10, \ $$ ^5C_4=5, ^5C_5=1$.
Substituting the values:
$(100-2)^5 = 1(100)^5 - 5(100)^4(2) + 10(100)^3(2)^2 - 10(100)^2(2)^3 \ $$ + 5(100)^1(2)^4 - 1(100)^0(2)^5$
$= (10^2)^5 - 10 \cdot (10^2)^4 + 10 \cdot (10^2)^3 \cdot 4 - 10 \cdot (10^2)^2 \cdot 8 \ $$ + 5 \cdot 100 \cdot 16 - 1 \cdot 1 \cdot 32$
$= 10^{10} - 10 \cdot 10^8 + 40 \cdot 10^6 - 80 \cdot 10^4 + 8000 - 32$
$= 10,000,000,000 - 1,000,000,000 + 40,000,000 - 800,000 \ $$ + 8,000 - 32$
$= 9,000,000,000 + 40,000,000 - 800,000 + 8,000 - 32$
$= 9,040,000,000 - 800,000 + 7,968$
$= 9,039,200,000 + 7,968$
$= 9,039,207,968$
Therefore, $(98)^5 = 9,039,207,968$.
Example 3: Which is larger (1.01)1000000 or 10,000?
Answer:
To Determine:
Which of the two numbers, $(1.01)^{1000000}$ or $10,000$, is larger.
Solution:
We can use the Binomial Theorem to expand $(1.01)^{1000000}$.
First, we write $1.01$ as $(1 + 0.01)$.
So, we need to evaluate $(1 + 0.01)^{1000000}$.
The Binomial Theorem states that for a positive integer $n$:
$(1+x)^n = {^nC_0} + {^nC_1}x + {^nC_2}x^2 + \dots + {^nC_n}x^n$
Here, $x = 0.01$ and $n = 1,000,000$.
Let's look at the first two terms of the expansion:
First term: $^nC_0 = {^{1000000}}C_0 = 1$.
Second term: $^nC_1 x = {^{1000000}}C_1 (0.01) = 1,000,000 \times 0.01 = 10,000$.
The full expansion is:
$(1.01)^{1000000} = 1 + 10,000 + {^{1000000}}C_2(0.01)^2 + \dots$
The third term, ${^{1000000}}C_2(0.01)^2$, and all subsequent terms in the expansion are positive numbers.
So, we can write:
$(1.01)^{1000000} = 10,001 + (\text{sum of other positive terms})$
This shows that the value of $(1.01)^{1000000}$ is greater than $10,001$.
Since $10,001 > 10,000$, it is clear that $(1.01)^{1000000}$ is larger than $10,000$.
Therefore, $(1.01)^{1000000}$ is larger.
Example 4: Using binomial theorem, prove that 6n – 5n always leaves remainder 1 when divided by 25.
Answer:
To Prove:
$6^n - 5n$ leaves a remainder of 1 when divided by 25 for any positive integer $n$.
This is equivalent to proving that $6^n - 5n - 1$ is a multiple of 25.
Proof:
We start by expressing $6^n$ in a form suitable for the Binomial Theorem. We can write $6 = 1 + 5$.
$6^n = (1+5)^n$
Using the Binomial Theorem, we expand $(1+5)^n$:
$(1+5)^n = {^nC_0}(1)^{n-0}(5)^0 + {^nC_1}(1)^{n-1}(5)^1 + {^nC_2}(1)^{n-2}(5)^2 \ $$ + {^nC_3}(1)^{n-3}(5)^3 + \dots + {^nC_n}(1)^0(5)^n$
$6^n = {^nC_0} + {^nC_1}(5) + {^nC_2}(5^2) + {^nC_3}(5^3) + \dots + {^nC_n}(5^n)$
We know that $^nC_0 = 1$ and $^nC_1 = n$.
$6^n = 1 + n(5) + {^nC_2}(25) + {^nC_3}(125) + \dots + {^nC_n}(5^n)$
$6^n = 1 + 5n + {^nC_2}(25) + {^nC_3}(5 \cdot 25) + \dots$
Now, let's consider the expression $6^n - 5n$:
$6^n - 5n = (1 + 5n + {^nC_2}(25) + {^nC_3}(125) + \dots) - 5n$
$6^n - 5n = 1 + {^nC_2}(25) + {^nC_3}(125) + \dots$
We can factor out 25 from all terms except the first one (for $n \ge 2$).
$6^n - 5n = 1 + 25 \left( {^nC_2} + {^nC_3}(5) + \dots + {^nC_n}5^{n-2} \right)$
Let $K = {^nC_2} + 5 \cdot {^nC_3} + \dots + 5^{n-2} \cdot {^nC_n}$. Since $n$ is a positive integer, all the binomial coefficients are integers, so $K$ is an integer for $n \ge 2$.
If $n=1$, $6^1 - 5(1) = 1$. The expression becomes $1+25(0)$, so $K=0$.
Thus, for any positive integer $n$, we can write:
$6^n - 5n = 1 + 25K$, where $K$ is an integer.
This expression shows that $6^n - 5n$ is 1 more than a multiple of 25. Therefore, when $6^n - 5n$ is divided by 25, it always leaves a remainder of 1.
Hence, proved.
Exercise 8.1
Expand each of the expressions in Exercises 1 to 5.
Question 1. (1 – 2x)5
Answer:
To Expand:
$(1 - 2x)^5$.
Solution:
We use the Binomial Theorem: $(a+b)^n = \sum_{k=0}^{n} {^nC_k} a^{n-k} b^k$.
Here, $a=1$, $b=-2x$, and $n=5$.
The binomial coefficients for $n=5$ are $^5C_0=1, ^5C_1=5, ^5C_2=10, ^5C_3=10, ^5C_4=5, ^5C_5=1$.
The expansion is:
$(1 - 2x)^5 = {^5C_0}(1)^5(-2x)^0 + {^5C_1}(1)^4(-2x)^1 + {^5C_2}(1)^3(-2x)^2 \ $$ + {^5C_3}(1)^2(-2x)^3 + {^5C_4}(1)^1(-2x)^4 + {^5C_5}(1)^0(-2x)^5$
$= 1(1)(1) + 5(1)(-2x) + 10(1)(4x^2) + 10(1)(-8x^3) + 5(1)(16x^4) \ $$ + 1(1)(-32x^5)$
$= 1 - 10x + 40x^2 - 80x^3 + 80x^4 - 32x^5$.
Therefore, the expansion is $1 - 10x + 40x^2 - 80x^3 + 80x^4 - 32x^5$.
Question 2. $\left( \frac{2}{x}-\frac{x}{2} \right)^{5}$
Answer:
To Expand:
$\left( \frac{2}{x}-\frac{x}{2} \right)^{5}$.
Solution:
Using the Binomial Theorem with $a=\frac{2}{x}$, $b=-\frac{x}{2}$, and $n=5$.
The coefficients are $1, 5, 10, 10, 5, 1$.
Expansion:
$= {^5C_0}\left(\frac{2}{x}\right)^5 - {^5C_1}\left(\frac{2}{x}\right)^4\left(\frac{x}{2}\right) + {^5C_2}\left(\frac{2}{x}\right)^3\left(\frac{x}{2}\right)^2 - {^5C_3}\left(\frac{2}{x}\right)^2\left(\frac{x}{2}\right)^3 \ $$ + {^5C_4}\left(\frac{2}{x}\right)\left(\frac{x}{2}\right)^4 - {^5C_5}\left(\frac{x}{2}\right)^5$
$= 1\left(\frac{32}{x^5}\right) - 5\left(\frac{16}{x^4}\right)\left(\frac{x}{2}\right) + 10\left(\frac{8}{x^3}\right)\left(\frac{x^2}{4}\right) - 10\left(\frac{4}{x^2}\right)\left(\frac{x^3}{8}\right) \ $$ + 5\left(\frac{2}{x}\right)\left(\frac{x^4}{16}\right) - 1\left(\frac{x^5}{32}\right)$
$= \frac{32}{x^5} - \frac{40}{x^3} + \frac{20}{x} - 5x + \frac{5x^3}{8} - \frac{x^5}{32}$.
Therefore, the expansion is $\frac{32}{x^5} - \frac{40}{x^3} + \frac{20}{x} - 5x + \frac{5x^3}{8} - \frac{x^5}{32}$.
Question 3. (2x – 3)6
Answer:
To Expand:
$(2x - 3)^6$.
Solution:
Using the Binomial Theorem with $a=2x$, $b=-3$, and $n=6$.
The coefficients for $n=6$ are $^6C_0=1, ^6C_1=6, ^6C_2=15, \ $$ ^6C_3=20, ^6C_4=15, ^6C_5=6, ^6C_6=1$.
Expansion:
$= {^6C_0}(2x)^6 - {^6C_1}(2x)^5(3) + {^6C_2}(2x)^4(3)^2 - {^6C_3}(2x)^3(3)^3 + \ $$ {^6C_4}(2x)^2(3)^4 - {^6C_5}(2x)(3)^5 + {^6C_6}(3)^6$
$= 1(64x^6) - 6(32x^5)(3) + 15(16x^4)(9) - 20(8x^3)(27) + 15(4x^2)(81) \ $$ - 6(2x)(243) + 1(729)$
$= 64x^6 - 576x^5 + 2160x^4 - 4320x^3 + 4860x^2 - 2916x + 729$.
Therefore, the expansion is $64x^6 - 576x^5 + 2160x^4 \ $$ - 4320x^3 + 4860x^2 - 2916x + 729$.
Question 4. $\left( \frac{x}{3}+\frac{1}{x} \right)^{5}$
Answer:
To Expand:
$\left( \frac{x}{3}+\frac{1}{x} \right)^{5}$.
Solution:
Using the Binomial Theorem with $a=\frac{x}{3}$, $b=\frac{1}{x}$, and $n=5$.
The coefficients are $1, 5, 10, 10, 5, 1$.
Expansion:
$= {^5C_0}\left(\frac{x}{3}\right)^5 + {^5C_1}\left(\frac{x}{3}\right)^4\left(\frac{1}{x}\right) + {^5C_2}\left(\frac{x}{3}\right)^3\left(\frac{1}{x}\right)^2 + {^5C_3}\left(\frac{x}{3}\right)^2\left(\frac{1}{x}\right)^3 \ $$ + {^5C_4}\left(\frac{x}{3}\right)\left(\frac{1}{x}\right)^4 + {^5C_5}\left(\frac{1}{x}\right)^5$
$= 1\left(\frac{x^5}{243}\right) + 5\left(\frac{x^4}{81}\right)\left(\frac{1}{x}\right) + 10\left(\frac{x^3}{27}\right)\left(\frac{1}{x^2}\right) + 10\left(\frac{x^2}{9}\right)\left(\frac{1}{x^3}\right) \ $$ + 5\left(\frac{x}{3}\right)\left(\frac{1}{x^4}\right) + 1\left(\frac{1}{x^5}\right)$
$= \frac{x^5}{243} + \frac{5x^3}{81} + \frac{10x}{27} + \frac{10}{9x} + \frac{5}{3x^3} + \frac{1}{x^5}$.
Therefore, the expansion is $\frac{x^5}{243} + \frac{5x^3}{81} + \frac{10x}{27} + \frac{10}{9x} + \frac{5}{3x^3} + \frac{1}{x^5}$.
Question 5. $\left( x+\frac{1}{x} \right)^{6}$
Answer:
To Expand:
$\left( x+\frac{1}{x} \right)^{6}$.
Solution:
Using the Binomial Theorem with $a=x$, $b=\frac{1}{x}$, and $n=6$.
The coefficients for $n=6$ are $1, 6, 15, 20, 15, 6, 1$.
Expansion:
$= {^6C_0}x^6 + {^6C_1}x^5\left(\frac{1}{x}\right) + {^6C_2}x^4\left(\frac{1}{x}\right)^2 + {^6C_3}x^3\left(\frac{1}{x}\right)^3 + {^6C_4}x^2\left(\frac{1}{x}\right)^4 \ $$ + {^6C_5}x\left(\frac{1}{x}\right)^5 + {^6C_6}\left(\frac{1}{x}\right)^6$
$= 1(x^6) + 6(x^4) + 15(x^2) + 20(1) + 15\left(\frac{1}{x^2}\right) + 6\left(\frac{1}{x^4}\right) + 1\left(\frac{1}{x^6}\right)$
$= x^6 + 6x^4 + 15x^2 + 20 + \frac{15}{x^2} + \frac{6}{x^4} + \frac{1}{x^6}$.
Therefore, the expansion is $x^6 + 6x^4 + 15x^2 + 20 + \frac{15}{x^2} + \frac{6}{x^4} + \frac{1}{x^6}$.
Using binomial theorem, evaluate each of the following:
Question 6. (96)3
Answer:
To Evaluate:
$(96)^3$ using the Binomial Theorem.
Solution:
We can write 96 as $(100 - 4)$. So, we need to evaluate $(100 - 4)^3$.
Using the Binomial Theorem for $(a-b)^n$ with $a=100$, $b=4$, and $n=3$:
$(a-b)^3 = {^3C_0}a^3 - {^3C_1}a^2b + {^3C_2}ab^2 - {^3C_3}b^3$
The coefficients are: $^3C_0=1, ^3C_1=3, ^3C_2=3, ^3C_3=1$.
$(100-4)^3 = 1(100)^3 - 3(100)^2(4) + 3(100)(4)^2 - 1(4)^3$
$= 1,000,000 - 3(10,000)(4) + 3(100)(16) - 64$
$= 1,000,000 - 120,000 + 4,800 - 64$
$= 880,000 + 4,736$
$= 884,736$
Therefore, $(96)^3 = 884,736$.
Question 7. (102)5
Answer:
To Evaluate:
$(102)^5$ using the Binomial Theorem.
Solution:
We can write 102 as $(100 + 2)$. So, we need to evaluate $(100 + 2)^5$.
Using the Binomial Theorem for $(a+b)^n$ with $a=100$, $b=2$, and $n=5$:
The coefficients are: $^5C_0=1, ^5C_1=5, ^5C_2=10, \ $$ ^5C_3=10, ^5C_4=5, ^5C_5=1$.
$(100+2)^5 = {^5C_0}(100)^5 + {^5C_1}(100)^4(2) + {^5C_2}(100)^3(2)^2 \ $$ + {^5C_3}(100)^2(2)^3 + {^5C_4}(100)(2)^4 + {^5C_5}(2)^5$
$= 1(10^{10}) + 5(10^8)(2) + 10(10^6)(4) + 10(10^4)(8) + 5(100)(16) + 1(32)$
$= 10,000,000,000 + 1,000,000,000 + 40,000,000 + 800,000 \ $$ + 8,000 + 32$
$= 11,040,808,032$
Therefore, $(102)^5 = 11,040,808,032$.
Question 8. (101)4
Answer:
To Evaluate:
$(101)^4$ using the Binomial Theorem.
Solution:
We can write 101 as $(100 + 1)$. So, we need to evaluate $(100 + 1)^4$.
Using the Binomial Theorem with $a=100$, $b=1$, and $n=4$:
The coefficients are: $^4C_0=1, ^4C_1=4, ^4C_2=6, ^4C_3=4, ^4C_4=1$.
$(100+1)^4 = {^4C_0}(100)^4 + {^4C_1}(100)^3 + {^4C_2}(100)^2 + {^4C_3}(100) + {^4C_4}$
$= 1(100,000,000) + 4(1,000,000) + 6(10,000) + 4(100) + 1$
$= 100,000,000 + 4,000,000 + 60,000 + 400 + 1$
$= 104,060,401$
Therefore, $(101)^4 = 104,060,401$.
Question 9. (99)5
Answer:
To Evaluate:
$(99)^5$ using the Binomial Theorem.
Solution:
We can write 99 as $(100 - 1)$. So, we need to evaluate $(100 - 1)^5$.
Using the Binomial Theorem with $a=100$, $b=1$, and $n=5$:
The coefficients are: $1, 5, 10, 10, 5, 1$.
$(100-1)^5 = {^5C_0}(100)^5 - {^5C_1}(100)^4 + {^5C_2}(100)^3 - {^5C_3}(100)^2 \ $$ + {^5C_4}(100) - {^5C_5}$
$= 1(10^{10}) - 5(10^8) + 10(10^6) - 10(10^4) + 5(100) - 1$
$= 10,000,000,000 - 500,000,000 + 10,000,000 - 100,000 + 500 - 1$
$= 9,500,000,000 + 10,000,000 - 100,000 + 499$
$= 9,510,000,000 - 100,000 + 499$
$= 9,509,900,000 + 499$
$= 9,509,900,499$
Therefore, $(99)^5 = 9,509,900,499$.
Question 10. Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.
Answer:
To Determine:
Which of the two numbers, $(1.1)^{10000}$ or $1000$, is larger.
Solution:
We use the Binomial Theorem to expand $(1.1)^{10000}$.
First, we write $1.1$ as $(1 + 0.1)$.
So, we need to evaluate $(1 + 0.1)^{10000}$.
The Binomial Theorem states that $(1+x)^n = {^nC_0} \ $$ + {^nC_1}x + {^nC_2}x^2 + \dots + {^nC_n}x^n$.
Here, $x = 0.1$ and $n = 10,000$.
The expansion is:
$(1 + 0.1)^{10000} = {^{10000}}C_0 + {^{10000}}C_1(0.1) + {^{10000}}C_2(0.1)^2 + \dots$
Let's evaluate the first two terms:
First term: $^{10000}C_0 = 1$.
Second term: $^{10000}C_1(0.1) = 10,000 \times 0.1 = 1,000$.
The expansion is $(1.1)^{10000} = 1 + 1,000 + (\text{sum of other positive terms})$.
$(1.1)^{10000} = 1,001 + (\text{sum of other positive terms})$.
Since the sum of the other terms is a positive value, we have:
$(1.1)^{10000} > 1,001$.
Since $1,001 > 1,000$, it follows that $(1.1)^{10000}$ is larger than $1,000$.
Therefore, $(1.1)^{10000}$ is larger.
Question 11. Find (a + b)4 – (a – b)4 . Hence, evaluate $(\sqrt{3} + \sqrt{2})^4 - (\sqrt{3} - \sqrt{2})^4$ .
Answer:
Part 1: Find $(a + b)^4 – (a – b)^4$.
Using the Binomial Theorem:
$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$.
$(a-b)^4 = a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4$.
Subtracting the second expansion from the first:
$(a+b)^4 - (a-b)^4 = (a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4) \ $$ - (a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4)$
$= (a^4 - a^4) + (4a^3b - (-4a^3b)) + (6a^2b^2 - 6a^2b^2) + (4ab^3 - (-4ab^3)) \ $$ + (b^4 - b^4)$
$= 8a^3b + 8ab^3 = 8ab(a^2 + b^2)$.
Part 2: Evaluate $(\sqrt{3} + \sqrt{2})^4 - (\sqrt{3} - \sqrt{2})^4$.
This expression is in the form $(a+b)^4 - (a-b)^4$ with $a=\sqrt{3}$ and $b=\sqrt{2}$.
Using the result from Part 1, $8ab(a^2 + b^2)$:
$= 8(\sqrt{3})(\sqrt{2})((\sqrt{3})^2 + (\sqrt{2})^2)$
$= 8(\sqrt{6})(3 + 2)$
$= 8(\sqrt{6})(5) = 40\sqrt{6}$.
Therefore, the value is $40\sqrt{6}$.
Question 12. Find (x + 1)6 + (x – 1)6 . Hence or otherwise evaluate $(\sqrt{2} + 1)^6 + (\sqrt{2} - 1)^6$ .
Answer:
Part 1: Find $(x + 1)^6 + (x – 1)^6$.
Using the Binomial Theorem:
$(x+1)^6 = x^6 + 6x^5 + 15x^4 + 20x^3 + 15x^2 + 6x + 1$.
$(x-1)^6 = x^6 - 6x^5 + 15x^4 - 20x^3 + 15x^2 - 6x + 1$.
Adding the two expansions, the terms with odd powers cancel out:
$(x+1)^6 + (x-1)^6 = 2(x^6 + 15x^4 + 15x^2 + 1)$.
Part 2: Evaluate $(\sqrt{2} + 1)^6 + (\sqrt{2} - 1)^6$.
This expression is in the form $(x+1)^6 + (x-1)^6$ with $x=\sqrt{2}$.
Using the result from Part 1, $2(x^6 + 15x^4 + 15x^2 + 1)$:
$= 2((\sqrt{2})^6 + 15(\sqrt{2})^4 + 15(\sqrt{2})^2 + 1)$
$= 2(8 + 15(4) + 15(2) + 1)$
$= 2(8 + 60 + 30 + 1)$
$= 2(99) = 198$.
Therefore, the value is 198.
Question 13. Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.
Answer:
To Prove:
$9^{n+1} - 8n - 9$ is divisible by 64 for any positive integer $n$.
Proof:
We use the Binomial Theorem to expand $9^{n+1}$. We write $9 = 1 + 8$.
$9^{n+1} = (1+8)^{n+1}$
$(1+8)^{n+1} = {^{n+1}}C_0 + {^{n+1}}C_1(8) + {^{n+1}}C_2(8)^2 + {^{n+1}}C_3(8)^3 + \dots + \ $$ {^{n+1}}C_{n+1}(8)^{n+1}$
$9^{n+1} = 1 + (n+1)(8) + {^{n+1}}C_2(64) + {^{n+1}}C_3(8^3) + \dots$
$9^{n+1} = 1 + 8n + 8 + 64 \cdot {^{n+1}}C_2 + \dots$
$9^{n+1} = 9 + 8n + 64 \left( {^{n+1}}C_2 + 8 \cdot {^{n+1}}C_3 + \dots \right)$
Now, rearrange the equation:
$9^{n+1} - 8n - 9 = 64 \left( {^{n+1}}C_2 + 8 \cdot {^{n+1}}C_3 + \dots \right)$
Let $K = {^{n+1}}C_2 + 8 \cdot {^{n+1}}C_3 + \dots$. Since all terms are integers, $K$ is an integer.
$9^{n+1} - 8n - 9 = 64K$
This shows that $9^{n+1} - 8n - 9$ is a multiple of 64. Therefore, it is divisible by 64.
Hence, proved.
Question 14. Prove that $\sum\limits_{r=0}^{n} 3^r\; ^nC_r = 4^n$ .
Answer:
To Prove:
$\sum\limits_{r=0}^{n} 3^r \cdot {^nC_r} = 4^n$.
Proof:
We start with the Binomial Theorem:
$(a+b)^n = \sum\limits_{r=0}^{n} {^nC_r} a^{n-r} b^r$
The given summation is $\sum\limits_{r=0}^{n} {^nC_r} \cdot 3^r$.
Comparing this with the general term of the binomial expansion, $^nC_r a^{n-r} b^r$, we can see that if we let $b=3$ and $a=1$, the general term becomes:
$^nC_r (1)^{n-r} (3)^r = {^nC_r} \cdot 1 \cdot 3^r = {^nC_r} \cdot 3^r$.
This matches the term in the given summation.
Therefore, we can substitute $a=1$ and $b=3$ into the Binomial Theorem:
$(1+3)^n = \sum\limits_{r=0}^{n} {^nC_r} (1)^{n-r} (3)^r$
$(4)^n = \sum\limits_{r=0}^{n} {^nC_r} \cdot 3^r$
Rearranging the equation, we get:
$\sum\limits_{r=0}^{n} 3^r \cdot {^nC_r} = 4^n$.
Hence, proved.
Example 5 to 9 (Before Exercise 8.2)
Example 5: Find a if the 17th and 18th terms of the expansion (2 + a)50 are equal
Answer:
Given:
The binomial expansion is $(2 + a)^{50}$.
The 17th term ($T_{17}$) is equal to the 18th term ($T_{18}$).
To Find:
The value of $a$.
Solution:
The general term of the expansion $(x+y)^n$ is $T_{r+1} = {^nC_r} x^{n-r} y^r$.
For the expansion $(2+a)^{50}$, we have $x=2$, $y=a$, and $n=50$.
17th term ($T_{17}$): Here, $r+1 = 17$, so $r=16$.
$T_{17} = {^{50}}C_{16} (2)^{50-16} a^{16} = {^{50}}C_{16} (2)^{34} a^{16}$.
18th term ($T_{18}$): Here, $r+1 = 18$, so $r=17$.
$T_{18} = {^{50}}C_{17} (2)^{50-17} a^{17} = {^{50}}C_{17} (2)^{33} a^{17}$.
Given that $T_{17} = T_{18}$:
${^{50}}C_{16} (2)^{34} a^{16} = {^{50}}C_{17} (2)^{33} a^{17}$.
We can rewrite the equation to solve for $a$. Assuming $a \neq 0$:
$\frac{a^{17}}{a^{16}} = \frac{{^{50}}C_{16} (2)^{34}}{{^{50}}C_{17} (2)^{33}}$
$a = \frac{{^{50}}C_{16}}{{^{50}}C_{17}} \cdot \frac{2^{34}}{2^{33}}$
We use the property $\frac{^nC_k}{^nC_{k+1}} = \frac{k+1}{n-k}$. Here, $n=50$ and $k=16$.
$\frac{{^{50}}C_{16}}{{^{50}}C_{17}} = \frac{16+1}{50-16} = \frac{17}{34} = \frac{1}{2}$.
Also, $\frac{2^{34}}{2^{33}} = 2$.
Substituting these back:
$a = \left(\frac{1}{2}\right) \cdot (2) = 1$.
Therefore, the value of $a=1$.
Example 6: Show that the middle term in the expansion of (1 + x)2n is $\frac{1.3.5...(2n \;-\; 1)}{n!}$ 2n xn , where n is a positive integer
Answer:
To Show:
The middle term in the expansion of $(1 + x)^{2n}$ is $\frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{n!} 2n x^n$.
(Note: There appears to be a common typo in this problem statement. The term should be $2^n x^n$, not $2n x^n$. The following proof will derive the correct form.)
Proof:
In the expansion of $(1+x)^{2n}$, the total number of terms is $2n+1$, which is odd. Thus, there is one middle term.
The middle term is the $(\frac{2n}{2} + 1)$-th term, which is the $(n+1)$-th term.
The general term is $T_{r+1} = {^{2n}}C_r x^r$. For the middle term, $r=n$.
Middle term = $T_{n+1} = {^{2n}}C_n x^n$.
Now we evaluate the coefficient ${^{2n}}C_n$:
${^{2n}}C_n = \frac{(2n)!}{n!(2n-n)!} = \frac{(2n)!}{n!n!}$.
We can write $(2n)!$ as the product of all integers from 1 to $2n$.
$(2n)! = [1 \cdot 3 \cdot 5 \dots (2n-1)] \cdot [2 \cdot 4 \cdot 6 \dots (2n)]$.
The second part is the product of all even numbers up to $2n$. We can factor out a 2 from each of the $n$ terms:
$[2 \cdot 4 \cdot 6 \dots (2n)] = 2^n (1 \cdot 2 \cdot 3 \dots n) = 2^n n!$.
So, $(2n)! = [1 \cdot 3 \cdot 5 \dots (2n-1)] \cdot 2^n n!$.
Substituting this back into the coefficient:
${^{2n}}C_n = \frac{[1 \cdot 3 \cdot 5 \dots (2n-1)] \cdot 2^n n!}{n!n!} = \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{n!} \cdot 2^n$.
Therefore, the middle term is:
$T_{n+1} = \left(\frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{n!} \cdot 2^n\right) x^n = \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{n!} 2^n x^n$.
This shows that the middle term is $\frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{n!} 2^n x^n$, which confirms the typo in the original problem statement.
Example 7: Find the coefficient of x6y3 in the expansion of (x + 2y)9 .
Answer:
Given:
The expansion is $(x + 2y)^9$.
To Find:
The coefficient of the term containing $x^6y^3$.
Solution:
The general term of the expansion $(a+b)^n$ is $T_{r+1} = {^nC_r} a^{n-r} b^r$.
Here, $a=x$, $b=2y$, and $n=9$.
$T_{r+1} = {^9C_r} (x)^{9-r} (2y)^r = {^9C_r} \cdot x^{9-r} \cdot 2^r \cdot y^r = {^9C_r} \cdot 2^r \cdot x^{9-r} y^r$.
We want the term with $x^6y^3$. By comparing the powers, we see that $y^r$ must be $y^3$, so $r=3$.
Let's check the power of $x$: $x^{9-r} = x^{9-3} = x^6$. This matches.
So, we need to find the coefficient of the term where $r=3$.
The coefficient is ${^9C_3} \cdot 2^3$.
$^9C_3 = \frac{9!}{3!6!} = \frac{9 \times 8 \times 7}{3 \times 2 \times 1} = 3 \times 4 \times 7 = 84$.
$2^3 = 8$.
Coefficient = $84 \times 8 = 672$.
Therefore, the coefficient of $x^6y^3$ is 672.
Example 8: The second, third and fourth terms in the binomial expansion (x + a)n are 240, 720 and 1080, respectively. Find x, a and n.
Answer:
Given:
For the expansion of $(x+a)^n$:
Second term, $T_2 = {^nC_1} x^{n-1} a = nx^{n-1}a = 240$. ...(i)
Third term, $T_3 = {^nC_2} x^{n-2} a^2 = \frac{n(n-1)}{2}x^{n-2}a^2 = 720$. ...(ii)
Fourth term, $T_4 = {^nC_3} x^{n-3} a^3 = \frac{n(n-1)(n-2)}{6}x^{n-3}a^3 = 1080$. ...(iii)
Solution:
Step 1: Find n.
Divide equation (ii) by (i): $\frac{T_3}{T_2} = \frac{\frac{n(n-1)}{2}x^{n-2}a^2}{nx^{n-1}a} = \frac{720}{240} = 3$.
$\frac{n-1}{2} \cdot \frac{a}{x} = 3 \implies (n-1)\frac{a}{x} = 6$. ...(iv)
Divide equation (iii) by (ii): $\frac{T_4}{T_3} = \frac{\frac{n(n-1)(n-2)}{6}x^{n-3}a^3}{\frac{n(n-1)}{2}x^{n-2}a^2} = \frac{1080}{720} = \frac{3}{2}$.
$\frac{n-2}{3} \cdot \frac{a}{x} = \frac{3}{2} \implies (n-2)\frac{a}{x} = \frac{9}{2}$. ...(v)
Now divide (iv) by (v): $\frac{(n-1)\frac{a}{x}}{(n-2)\frac{a}{x}} = \frac{6}{9/2} = 6 \cdot \frac{2}{9} = \frac{4}{3}$.
$\frac{n-1}{n-2} = \frac{4}{3} \implies 3(n-1) = 4(n-2) \implies 3n-3 = 4n-8 \implies n=5$.
Step 2: Find a and x.
Substitute $n=5$ into (iv): $(5-1)\frac{a}{x} = 6 \implies 4\frac{a}{x} = 6 \implies \frac{a}{x} = \frac{3}{2}$. So, $a = \frac{3}{2}x$.
Substitute $n=5$ and $a = \frac{3}{2}x$ into (i):
$5x^{5-1}(\frac{3}{2}x) = 240 \implies 5x^4(\frac{3}{2}x) = 240 \implies \frac{15}{2}x^5 = 240$.
$x^5 = 240 \cdot \frac{2}{15} = 16 \cdot 2 = 32$.
Since $x^5 = 32$, we get $x=2$.
Now find $a$: $a = \frac{3}{2}x = \frac{3}{2}(2) = 3$.
Therefore, $x=2, a=3, n=5$.
Example 9: The coefficients of three consecutive terms in the expansion of (1 + a)n are in the ratio 1: 7 : 42. Find n.
Answer:
Given:
In the binomial expansion of $(1 + a)^n$, the coefficients of three consecutive terms are in the ratio $1:7:42$.
To Find:
The value of $n$.
Solution:
The coefficient of the $(r+1)^{\text{th}}$ term in the expansion of $(1+a)^n$ is $^nC_r$.
Let the three consecutive terms be the $(r+1)^{\text{th}}$, $(r+2)^{\text{th}}$, and $(r+3)^{\text{th}}$ terms.
Their respective coefficients are $^nC_r$, $^nC_{r+1}$, and $^nC_{r+2}$.
We are given the ratio:
$^nC_r : {^nC_{r+1}} : {^nC_{r+2}} = 1 : 7 : 42$
From this ratio, we can form two separate equations:
$\frac{^nC_r}{^nC_{r+1}} = \frac{1}{7}$
... (i)
$\frac{^nC_{r+1}}{^nC_{r+2}} = \frac{7}{42} = \frac{1}{6}$
... (ii)
We use the property relating consecutive binomial coefficients: $\frac{^nC_{k+1}}{^nC_k} = \frac{n-k}{k+1}$.
From equation (i), we can write $\frac{^nC_{r+1}}{^nC_r} = 7$.
Applying the property with $k=r$:
$\frac{n-r}{r+1} = 7$
$n-r = 7(r+1)$
$n-r = 7r + 7$
$n - 8r = 7$
$n - 8r - 7 = 0$
... (iii)
From equation (ii), we can write $\frac{^nC_{r+2}}{^nC_{r+1}} = 6$.
Applying the property with $k=r+1$:
$\frac{n-(r+1)}{r+1+1} = 6$
$\frac{n-r-1}{r+2} = 6$
$n-r-1 = 6(r+2)$
$n-r-1 = 6r + 12$
$n - 7r = 13$
$n - 7r - 13 = 0$
... (iv)
Now we have a system of two linear equations with variables $n$ and $r$.
From (iii), $n = 8r + 7$.
Substitute this expression for $n$ into equation (iv):
$(8r + 7) - 7r - 13 = 0$
$r - 6 = 0$
$r = 6$
Now, substitute the value of $r=6$ back into the expression for $n$:
$n = 8(6) + 7$
$n = 48 + 7$
$n = 55$
Therefore, the value of $n=55$.
Exercise 8.2
Find the coefficient of
Question 1. x5 in (x + 3)8
Answer:
Given:
The binomial expression is $(x + 3)^8$.
To Find:
The coefficient of the term containing $x^5$.
Solution:
The general term in the expansion of $(a+b)^n$ is $T_{r+1} = {^nC_r} a^{n-r} b^r$.
For $(x+3)^8$, we have $a=x$, $b=3$, and $n=8$.
$T_{r+1} = {^8C_r} (x)^{8-r} (3)^r = {^8C_r} \cdot 3^r \cdot x^{8-r}$.
We want the term where the power of $x$ is 5. So, we set $8-r = 5$, which gives $r=3$.
The term is $T_{3+1} = T_4$. The coefficient is ${^8C_3} \cdot 3^3$.
$^8C_3 = \frac{8!}{3!(8-3)!} = \frac{8 \times 7 \times 6}{3 \times 2 \times 1} = 56$.
$3^3 = 27$.
Coefficient = $56 \times 27 = 1512$.
Therefore, the coefficient of $x^5$ is 1512.
Question 2. a5b7 in (a – 2b)12 .
Answer:
Given:
The binomial expression is $(a - 2b)^{12}$.
To Find:
The coefficient of the term containing $a^5b^7$.
Solution:
The general term is $T_{r+1} = {^{12}C_r} (a)^{12-r} (-2b)^r = {^{12}C_r} \cdot (-2)^r \cdot a^{12-r} \cdot b^r$.
We want the term with $a^5b^7$. By comparing the powers of $b$, we get $r=7$.
Let's check the power of $a$: $12-r = 12-7=5$. This matches.
The coefficient is ${^{12}}C_7 \cdot (-2)^7$.
$^{12}C_7 = {^{12}}C_5 = \frac{12 \times 11 \times 10 \times 9 \times 8}{5 \times 4 \times 3 \times 2 \times 1} = 792$.
$(-2)^7 = -128$.
Coefficient = $792 \times (-128) = -101,376$.
Therefore, the coefficient of $a^5b^7$ is -101,376.
Write the general term in the expansion of
Question 3. (x2 – y)6
Answer:
Given:
The binomial expression is $(x^2 - y)^6$.
To Find:
The general term in the expansion of $(x^2 - y)^6$.
Solution:
The general term, which is the $(r+1)^{\text{th}}$ term in the binomial expansion of $(a+b)^n$, is given by the formula:
$T_{r+1} = {^nC_r} a^{n-r} b^r$
For the given expression $(x^2 - y)^6$, we identify the components:
$a = x^2$
$b = -y$
$n = 6$
Now, we substitute these values into the general term formula:
$T_{r+1} = {^6C_r} (x^2)^{6-r} (-y)^r$
We can simplify this expression by applying the rules of exponents and separating the negative sign:
$T_{r+1} = {^6C_r} x^{2(6-r)} (-1)^r y^r$
$T_{r+1} = (-1)^r {^6C_r} x^{12-2r} y^r$
Here, the value of $r$ can range from 0 to 6, i.e., $r \in \{0, 1, 2, 3, 4, 5, 6\}$.
Therefore, the general term in the expansion of $(x^2 - y)^6$ is $T_{r+1} = (-1)^r {^6C_r} x^{12-2r} y^r$.
Question 4. (x2 – yx)12 , x ≠ 0.
Answer:
Given:
The binomial expression is $(x^2 - yx)^{12}$, with the condition $x \neq 0$.
To Find:
The general term in the expansion of $(x^2 - yx)^{12}$.
Solution:
The formula for the general term, the $(r+1)^{\text{th}}$ term, in the binomial expansion of $(a+b)^n$ is:
$T_{r+1} = {^nC_r} a^{n-r} b^r$
For the given expression $(x^2 - yx)^{12}$, we identify:
$a = x^2$
$b = -yx$
$n = 12$
Substitute these values into the general term formula:
$T_{r+1} = {^{12}C_r} (x^2)^{12-r} (-yx)^r$
Now, we simplify the expression using the properties of exponents:
$T_{r+1} = {^{12}C_r} (x^{2(12-r)}) ((-1)^r y^r x^r)$
$T_{r+1} = {^{12}C_r} (x^{24-2r}) (-1)^r y^r x^r$
Combine the terms with the same base, $x$:
$T_{r+1} = (-1)^r {^{12}C_r} x^{24-2r+r} y^r$
$T_{r+1} = (-1)^r {^{12}C_r} x^{24-r} y^r$
Here, the value of $r$ can range from 0 to 12, i.e., $r \in \{0, 1, 2, \dots, 12\}$.
Therefore, the general term in the expansion of $(x^2 - yx)^{12}$ is $T_{r+1} = (-1)^r {^{12}C_r} x^{24-r} y^r$.
Question 5. Find the 4th term in the expansion of (x – 2y)12 .
Answer:
Given:
The binomial expansion is $(x - 2y)^{12}$.
To Find:
The 4th term of the expansion.
Solution:
The general term of the expansion $(a+b)^n$ is $T_{r+1} = {^nC_r} a^{n-r} b^r$.
For $(x - 2y)^{12}$, we have $a=x$, $b=-2y$, and $n=12$.
To find the 4th term, we need to set $r+1=4$, which means $r=3$.
Substitute these values into the formula:
$T_4 = T_{3+1} = {^{12}C_3} (x)^{12-3} (-2y)^3$
$T_4 = {^{12}C_3} x^9 (-2)^3 y^3$
Now, we calculate the coefficient:
$^{12}C_3 = \frac{12!}{3!(12-3)!} = \frac{12 \times 11 \times 10}{3 \times 2 \times 1} = 2 \times 11 \times 10 = 220$.
$(-2)^3 = -8$.
The coefficient is $220 \times (-8) = -1760$.
So, the 4th term is $-1760x^9y^3$.
Therefore, the 4th term is $-1760x^9y^3$.
Question 6. Find the 13th term in the expansion of $\left( 9x-\frac{1}{3\sqrt{x}} \right)^{18}\;,\; x\neq0$ .
Answer:
Given:
The expansion is $\left( 9x-\frac{1}{3\sqrt{x}} \right)^{18}$.
To Find:
The 13th term of the expansion.
Solution:
The general term is $T_{r+1} = {^nC_r} a^{n-r} b^r$.
Here, $a=9x$, $b=-\frac{1}{3\sqrt{x}}$, and $n=18$.
To find the 13th term, we set $r+1=13$, which means $r=12$.
$T_{13} = T_{12+1} = {^{18}}C_{12} (9x)^{18-12} \left(-\frac{1}{3\sqrt{x}}\right)^{12}$
$T_{13} = {^{18}}C_{12} (9x)^6 \left(\frac{1}{3\sqrt{x}}\right)^{12}$ (since the power 12 is even, the negative sign becomes positive)
$T_{13} = {^{18}}C_{12} (9^6 x^6) \left(\frac{1}{3^{12} (\sqrt{x})^{12}}\right)$
Since $9=3^2$, $9^6=(3^2)^6=3^{12}$. Also, $(\sqrt{x})^{12} = (x^{1/2})^{12} = x^6$.
$T_{13} = {^{18}}C_{12} (3^{12} x^6) \left(\frac{1}{3^{12} x^6}\right)$
The terms involving variables and numbers cancel out: $T_{13} = {^{18}}C_{12}$.
Now, we calculate the value of $^{18}C_{12}$:
$^{18}C_{12} = {^{18}}C_{18-12} = {^{18}}C_6 = \frac{18 \times 17 \times 16 \times 15 \times 14 \times 13}{6 \times 5 \times 4 \times 3 \times 2 \times 1} = 18,564$.
Therefore, the 13th term is 18,564.
Find the middle terms in the expansions of
Question 7. $\left( 3 - \frac{x^3}{6} \right)^7$
Answer:
Given:
The expansion is $\left( 3 - \frac{x^3}{6} \right)^7$.
To Find:
The middle terms of the expansion.
Solution:
Here, the power is $n=7$. The total number of terms is $n+1 = 8$, which is even. So, there are two middle terms.
The positions of the middle terms are $(\frac{n+1}{2})$-th and $(\frac{n+1}{2}+1)$-th.
Middle terms are the $(\frac{7+1}{2})$-th = 4th term, and the $(\frac{7+1}{2}+1)$-th = 5th term.
4th Term ($T_4$): Here $r=3$.
$T_4 = {^7C_3} (3)^{7-3} \left(-\frac{x^3}{6}\right)^3 = 35 \cdot 3^4 \cdot (-\frac{x^9}{6^3}) = 35 \cdot 81 \cdot (-\frac{x^9}{216}) \ $$ = -\frac{2835}{216}x^9 = -\frac{105}{8}x^9$.
5th Term ($T_5$): Here $r=4$.
$T_5 = {^7C_4} (3)^{7-4} \left(-\frac{x^3}{6}\right)^4 = 35 \cdot 3^3 \cdot (\frac{x^{12}}{6^4}) = 35 \cdot 27 \cdot (\frac{x^{12}}{1296}) \ $$ = \frac{945}{1296}x^{12} = \frac{35}{48}x^{12}$.
The middle terms are $-\frac{105}{8}x^9$ and $\frac{35}{48}x^{12}$.
Question 8. $\left( \frac{x}{3}+9y \right)^{10}$
Answer:
Given:
The expansion is $\left( \frac{x}{3}+9y \right)^{10}$.
To Find:
The middle term of the expansion.
Solution:
Here, the power is $n=10$. The total number of terms is $n+1=11$, which is odd. So, there is one middle term.
The position of the middle term is $(\frac{n}{2}+1)$-th = $(\frac{10}{2}+1)$-th = 6th term.
6th Term ($T_6$): Here $r=5$.
$T_6 = {^{10}}C_5 \left(\frac{x}{3}\right)^{10-5} (9y)^5 = {^{10}}C_5 \left(\frac{x^5}{3^5}\right) (9^5y^5)$.
Since $9=3^2$, $9^5 = (3^2)^5=3^{10}$.
$T_6 = {^{10}}C_5 \frac{x^5}{3^5} \cdot 3^{10}y^5 = {^{10}}C_5 \cdot 3^{10-5} x^5 y^5 = {^{10}}C_5 \cdot 3^5 x^5 y^5$.
$^{10}C_5 = \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = 252$.
$3^5 = 243$.
Coefficient = $252 \times 243 = 61,236$.
The middle term is $61,236 x^5 y^5$.
Question 9. In the expansion of (1 + a)m+n , prove that coefficients of am and an are equal.
Answer:
To Prove:
In the expansion of $(1+a)^{m+n}$, the coefficient of $a^m$ is equal to the coefficient of $a^n$.
Proof:
The general term in the binomial expansion of $(1+x)^N$ is $T_{r+1} = {^NC_r} x^r$.
For the expansion of $(1+a)^{m+n}$, we have $x=a$ and the power $N=m+n$.
The general term is $T_{r+1} = {^{m+n}}C_r a^r$.
The coefficient of the term $a^r$ is ${^{m+n}}C_r$.
Coefficient of $a^m$:
To find the coefficient of $a^m$, we set $r=m$.
Coefficient of $a^m = {^{m+n}}C_m$.
Using the combination formula, ${^NC_k} = \frac{N!}{k!(N-k)!}$:
${^{m+n}}C_m = \frac{(m+n)!}{m!((m+n)-m)!} = \frac{(m+n)!}{m!n!}$.
Coefficient of $a^n$:
To find the coefficient of $a^n$, we set $r=n$.
Coefficient of $a^n = {^{m+n}}C_n$.
Using the combination formula:
${^{m+n}}C_n = \frac{(m+n)!}{n!((m+n)-n)!} = \frac{(m+n)!}{n!m!}$.
Comparison:
We see that the coefficient of $a^m$ is $\frac{(m+n)!}{m!n!}$ and the coefficient of $a^n$ is $\frac{(m+n)!}{n!m!}$.
Since multiplication is commutative, $m!n! = n!m!$.
Therefore, ${^{m+n}}C_m = {^{m+n}}C_n$.
This is also a direct application of the property ${^NC_k} = {^NC_{N-k}}$, where $N=m+n$ and $k=m$, so $N-k = (m+n)-m = n$.
Hence, the coefficients of $a^m$ and $a^n$ are equal. Proved.
Question 10. The coefficients of the (r – 1)th , rth and (r + 1)th terms in the expansion of (x + 1)n are in the ratio 1 : 3 : 5. Find n and r.
Answer:
Given:
In the expansion of $(x + 1)^n$, the coefficients of the $(r-1)^{\text{th}}$, $r^{\text{th}}$, and $(r+1)^{\text{th}}$ terms are in the ratio $1:3:5$.
Solution:
The coefficient of the $k^{\text{th}}$ term in the expansion of $(x+1)^n$ is $^nC_{k-1}$.
Coefficient of $(r-1)^{\text{th}}$ term = $^nC_{r-2}$.
Coefficient of $r^{\text{th}}$ term = $^nC_{r-1}$.
Coefficient of $(r+1)^{\text{th}}$ term = $^nC_r$.
We are given the ratios:
1) $\frac{^nC_{r-2}}{^nC_{r-1}} = \frac{1}{3} \implies \frac{r-1}{n-(r-1)+1} = \frac{r-1}{n-r+2} = \frac{1}{3} \implies 3r-3 = n-r+2 \ $$ \implies n - 4r + 5 = 0$. ...(i)
2) $\frac{^nC_{r-1}}{^nC_{r}} = \frac{3}{5} \implies \frac{r}{n-r+1} = \frac{3}{5} \implies 5r = 3(n-r+1) \ $$ \implies 5r = 3n-3r+3 \ $$ \implies 3n - 8r + 3 = 0$. ...(ii)
From (i), $n = 4r - 5$. Substitute this into (ii):
$3(4r - 5) - 8r + 3 = 0$
$12r - 15 - 8r + 3 = 0$
$4r - 12 = 0 \implies 4r = 12 \implies r=3$.
Now, find $n$ using $n = 4r - 5$:
$n = 4(3) - 5 = 12 - 5 = 7$.
Therefore, $n=7$ and $r=3$.
Question 11. Prove that the coefficient of xn in the expansion of (1 + x)2n is twice the coefficient of xn in the expansion of (1 + x)2n – 1 .
Answer:
To Prove:
Coefficient of $x^n$ in $(1 + x)^{2n} = 2 \times ($Coefficient of $x^n$ in $(1 + x)^{2n-1})$.
Proof:
The coefficient of $x^k$ in the expansion of $(1+x)^N$ is $^NC_k$.
Step 1: Find the coefficient of $x^n$ in $(1 + x)^{2n}$.
Here, $N=2n$ and $k=n$. The coefficient is ${^{2n}}C_n$.
${^{2n}}C_n = \frac{(2n)!}{n!(2n-n)!} = \frac{(2n)!}{n!n!}$.
Step 2: Find the coefficient of $x^n$ in $(1 + x)^{2n-1}$.
Here, $N=2n-1$ and $k=n$. The coefficient is ${^{2n-1}}C_n$.
${^{2n-1}}C_n = \frac{(2n-1)!}{n!((2n-1)-n)!} = \frac{(2n-1)!}{n!(n-1)!}$.
Step 3: Show the relationship.
We need to prove that ${^{2n}}C_n = 2 \cdot {^{2n-1}}C_n$.
Let's start with the expression for ${^{2n}}C_n$ and manipulate it:
${^{2n}}C_n = \frac{(2n)!}{n!n!} = \frac{2n \cdot (2n-1)!}{n \cdot (n-1)! \cdot n!} = \frac{2n}{n} \cdot \frac{(2n-1)!}{n!(n-1)!}$
${^{2n}}C_n = 2 \cdot \frac{(2n-1)!}{n!(n-1)!}$
The term $\frac{(2n-1)!}{n!(n-1)!}$ is exactly the expression for ${^{2n-1}}C_n$.
Therefore, ${^{2n}}C_n = 2 \cdot {^{2n-1}}C_n$.
Hence, proved.
Question 12. Find a positive value of m for which the coefficient of x2 in the expansion (1 + x)m is 6.
Answer:
Given:
In the expansion of $(1 + x)^m$, the coefficient of $x^2$ is 6.
To Find:
A positive value of $m$.
Solution:
The general term in the expansion of $(1+x)^m$ is $T_{r+1} = {^mC_r} x^r$.
The coefficient of $x^r$ is $^mC_r$.
For the term with $x^2$, we have $r=2$.
The coefficient of $x^2$ is $^mC_2$.
We are given that this coefficient is 6.
$^mC_2 = 6$
Using the combination formula:
$\frac{m!}{2!(m-2)!} = 6$
$\frac{m(m-1)}{2 \times 1} = 6$
$m(m-1) = 12$
$m^2 - m - 12 = 0$
Factoring the quadratic equation:
$(m-4)(m+3) = 0$
The possible values for $m$ are $m=4$ or $m=-3$.
Since we are looking for a positive value of $m$, the solution is $m=4$.
Example 10 to 17 - Miscellaneous Examples
Example 10: Find the term independent of x in the expansion of $\left( \frac{3}{2}x^2 - \frac{1}{3x} \right)^6$ .
Answer:
Given:
The expansion is $\left( \frac{3}{2}x^2 - \frac{1}{3x} \right)^6$.
To Find:
The term independent of $x$.
Solution:
The general term is $T_{r+1} = {^nC_r} a^{n-r} b^r$.
Here, $a=\frac{3}{2}x^2$, $b=-\frac{1}{3x}$, and $n=6$.
$T_{r+1} = {^6C_r} \left(\frac{3}{2}x^2\right)^{6-r} \left(-\frac{1}{3x}\right)^r$
$T_{r+1} = {^6C_r} \left(\frac{3}{2}\right)^{6-r} (x^2)^{6-r} (-1)^r \left(\frac{1}{3}\right)^r \left(\frac{1}{x}\right)^r$
$T_{r+1} = {^6C_r} (-1)^r \frac{3^{6-r}}{2^{6-r}} \frac{1}{3^r} x^{12-2r} x^{-r}$
$T_{r+1} = {^6C_r} (-1)^r \frac{3^{6-2r}}{2^{6-r}} x^{12-3r}$.
For the term to be independent of $x$, the power of $x$ must be 0.
$12-3r=0 \implies 3r=12 \implies r=4$.
The term is the 5th term ($T_5$). We substitute $r=4$ into the coefficient part:
Term = ${^6C_4} (-1)^4 \frac{3^{6-2(4)}}{2^{6-4}} = {^6C_2} \cdot 1 \cdot \frac{3^{-2}}{2^2} = 15 \cdot \frac{1}{3^2 \cdot 2^2} \ $$ = 15 \cdot \frac{1}{9 \cdot 4} \ $$ = \frac{15}{36} = \frac{5}{12}$.
The term independent of $x$ is $\frac{5}{12}$.
Example 11: If the coefficients of ar – 1 , ar and ar + 1 in the expansion of (1 + a)n are in arithmetic progression, prove that n2 – n(4r + 1) + 4r2 – 2 = 0.
Answer:
Given:
In the expansion of $(1+a)^n$, the coefficients of $a^{r-1}$, $a^r$, and $a^{r+1}$ are in Arithmetic Progression (AP).
The coefficients are ${^nC_{r-1}}, {^nC_r}, {^nC_{r+1}}$.
To Prove:
$n^2 - n(4r+1) + 4r^2 - 2 = 0$.
Proof:
If three terms are in AP, then the middle term is the average of the other two. So, $2 \cdot {^nC_r} = {^nC_{r-1}} + {^nC_{r+1}}$.
Divide by ${^nC_r}$: $2 = \frac{^nC_{r-1}}{^nC_r} + \frac{^nC_{r+1}}{^nC_r}$.
Using the property $\frac{^nC_{k-1}}{^nC_k} = \frac{k}{n-k+1}$, we get:
$2 = \frac{r}{n-r+1} + \frac{n-r}{r+1}$.
$2(n-r+1)(r+1) = r(r+1) + (n-r)(n-r+1)$.
$2(nr+n-r^2-r+r+1) = r^2+r + n^2-nr+n-nr+r^2-r$.
$2(nr+n-r^2+1) = 2r^2 + n^2 - 2nr + n$.
$2nr+2n-2r^2+2 = 2r^2 + n^2 - 2nr + n$.
Rearranging all terms to one side:
$n^2 - 4nr - n + 4r^2 - 2 = 0$.
$n^2 - n(4r+1) + 4r^2 - 2 = 0$.
Hence, proved.
Example 12: Show that the coefficient of the middle term in the expansion of (1 + x)2n is equal to the sum of the coefficients of two middle terms in the expansion of (1 + x)2n – 1 .
Answer:
To Show:
Coefficient of middle term in $(1+x)^{2n}$ equals the sum of coefficients of the two middle terms in $(1+x)^{2n-1}$.
Proof:
1. Middle term of $(1+x)^{2n}$:
The power is $2n$ (even), so there are $2n+1$ (odd) terms. The middle term is the $(\frac{2n}{2}+1) = (n+1)$-th term.
The coefficient of the $(n+1)$-th term ($T_{n+1}$) is ${^{2n}}C_n$.
2. Middle terms of $(1+x)^{2n-1}$:
The power is $2n-1$ (odd), so there are $2n$ (even) terms. There are two middle terms:
The $(\frac{2n-1+1}{2}) = n$-th term and the $(n+1)$-th term.
Coefficient of the $n$-th term ($T_n$) is ${^{2n-1}}C_{n-1}$.
Coefficient of the $(n+1)$-th term ($T_{n+1}$) is ${^{2n-1}}C_n$.
3. Show the equality:
We need to prove that ${^{2n}}C_n = {^{2n-1}}C_{n-1} + {^{2n-1}}C_n$.
This is a direct application of Pascal's Identity, which states that ${^N}C_k = {^{N-1}}C_{k-1} + {^{N-1}}C_k$.
By letting $N=2n$ and $k=n$, we get the required identity.
Hence, proved.
Example 13: Find the coefficient of a 4 in the product (1 + 2a)4 (2 – a)5 using binomial theorem.
Answer:
To Find:
The coefficient of $a^4$ in the product $(1 + 2a)^4 (2 – a)^5$.
Solution:
First, we write out the expansions for both terms:
$(1+2a)^4 = {^4C_0}(2a)^0 + {^4C_1}(2a)^1 + {^4C_2}(2a)^2 + {^4C_3}(2a)^3 + {^4C_4}(2a)^4 \ $$ = 1 + 8a + 24a^2 + 32a^3 + 16a^4$.
$(2-a)^5 = {^5C_0}2^5 - {^5C_1}2^4a + {^5C_2}2^3a^2 - {^5C_3}2^2a^3 + {^5C_4}2a^4 - {^5C_5}a^5 \ $$ = 32 - 80a + 80a^2 - 40a^3 + 10a^4 - a^5$.
To get the term with $a^4$ in the product, we multiply terms from each expansion whose powers of 'a' sum to 4:
- (Constant from 1st) $\times$ ($a^4$ from 2nd): $(1)(10a^4) = 10a^4$. Coeff: 10.
- ($a^1$ from 1st) $\times$ ($a^3$ from 2nd): $(8a)(-40a^3) = -320a^4$. Coeff: -320.
- ($a^2$ from 1st) $\times$ ($a^2$ from 2nd): $(24a^2)(80a^2) = 1920a^4$. Coeff: 1920.
- ($a^3$ from 1st) $\times$ ($a^1$ from 2nd): $(32a^3)(-80a) = -2560a^4$. Coeff: -2560.
- ($a^4$ from 1st) $\times$ (Constant from 2nd): $(16a^4)(32) = 512a^4$. Coeff: 512.
The total coefficient of $a^4$ is the sum of these individual coefficients:
$10 - 320 + 1920 - 2560 + 512 = -438$.
The coefficient is -438.
Example 14: Find the rth term from the end in the expansion of (x + a)n .
Answer:
To Find:
The $r^{\text{th}}$ term from the end in the expansion of $(x + a)^n$.
Solution:
The expansion of $(x+a)^n$ has $n+1$ terms in total.
The $r^{\text{th}}$ term from the end is the same as the $( (n+1) - r + 1 )^{\text{th}}$ term from the beginning.
Position from the beginning = $(n-r+2)^{\text{th}}$ term.
The general term from the beginning is $T_{k+1} = {^nC_k} x^{n-k} a^k$.
For the $(n-r+2)^{\text{th}}$ term, we set $k+1 = n-r+2$, which means $k = n-r+1$.
The term is: $T_{n-r+2} = {^nC_{n-r+1}} x^{n-(n-r+1)} a^{n-r+1}$.
$= {^nC_{n-r+1}} x^{r-1} a^{n-r+1}$.
Using the property ${^nC_k} = {^nC_{n-k}}$, we have ${^nC_{n-r+1}} = {^nC_{n-(n-r+1)}} = {^nC_{r-1}}$.
So, the term is ${^nC_{r-1}} x^{r-1} a^{n-r+1}$.
Alternate Method:
The $r^{\text{th}}$ term from the end of $(x+a)^n$ is the same as the $r^{\text{th}}$ term from the beginning of $(a+x)^n$.
For $(a+x)^n$, the $r^{\text{th}}$ term is $T_r = {^nC_{r-1}} a^{n-(r-1)} x^{r-1} = {^nC_{r-1}} a^{n-r+1} x^{r-1}$.
Both methods give the same result. The term is ${^nC_{r-1}} x^{r-1} a^{n-r+1}$.
Example 15: Find the term independent of x in the expansion of $\left( \sqrt [3] {x} + \frac{1}{2\sqrt [3] {x}} \right)^{18} \;,\; x>0$ .
Answer:
Given:
The expansion is $\left( x^{1/3} + \frac{1}{2x^{1/3}} \right)^{18}$.
To Find:
The term independent of $x$.
Solution:
The general term is $T_{r+1} = {^{18}C_r} (x^{1/3})^{18-r} \left(\frac{1}{2x^{1/3}}\right)^r$.
$T_{r+1} = {^{18}C_r} x^{\frac{18-r}{3}} \cdot \left(\frac{1}{2}\right)^r \cdot (x^{-1/3})^r \ $$ = {^{18}C_r} \left(\frac{1}{2}\right)^r x^{\frac{18-r}{3} - \frac{r}{3}} = {^{18}C_r} \left(\frac{1}{2}\right)^r x^{\frac{18-2r}{3}}$.
For the term to be independent of $x$, the power of $x$ must be 0.
$\frac{18-2r}{3} = 0 \implies 18-2r=0 \implies 2r=18 \implies r=9$.
The term is the 10th term ($T_{10}$). We substitute $r=9$ into the coefficient part:
Term = ${^{18}}C_9 \left(\frac{1}{2}\right)^9$.
$^{18}C_9 = \frac{18!}{9!9!} = 48,620$.
Term = $48,620 \cdot \frac{1}{512} = \frac{48620}{512} = \frac{12155}{128}$.
The term is $\frac{12155}{128}$.
Example 16: The sum of the coefficients of the first three terms in the expansion of $\left( x-\frac{3}{x^{2}} \right)^{m} \;,\; x \neq 0 ,$ m being a natural number, is 559. Find the term of the expansion containing x3 .
Answer:
Given:
The sum of coefficients of the first three terms of $\left( x-\frac{3}{x^{2}} \right)^{m}$ is 559.
Solution:
The first three terms are:
$T_1 = {^mC_0} x^m = x^m$. Coefficient = 1.
$T_2 = {^mC_1} x^{m-1} (-\frac{3}{x^2}) = -3m x^{m-3}$. Coefficient = $-3m$.
$T_3 = {^mC_2} x^{m-2} (-\frac{3}{x^2})^2 = \frac{m(m-1)}{2} x^{m-2} (\frac{9}{x^4}) = \frac{9m(m-1)}{2} x^{m-6}$. Coefficient = $\frac{9m(m-1)}{2}$.
Sum of coefficients: $1 - 3m + \frac{9m(m-1)}{2} = 559$.
$2 - 6m + 9m^2 - 9m = 1118 \implies 9m^2 - 15m - 1116 = 0$.
Divide by 3: $3m^2 - 5m - 372 = 0$.
Using the quadratic formula, $m = \frac{5 \pm \sqrt{25 - 4(3)(-372)}}{6} = \frac{5 \pm \sqrt{4489}}{6} = \frac{5 \pm 67}{6}$.
Since $m$ is a natural number, $m = \frac{5+67}{6} = \frac{72}{6} = 12$.
Now, find the term with $x^3$ in $\left( x-\frac{3}{x^{2}} \right)^{12}$.
The general term's power of $x$ is $x^{m-3r} = x^{12-3r}$.
$12-3r = 3 \implies 3r=9 \implies r=3$.
The term is $T_4 = {^{12}}C_3 x^{12-3} (-\frac{3}{x^2})^3 = 220 \cdot x^9 \cdot (-\frac{27}{x^6}) = -5940x^3$.
The term is $-5940x^3$.
Example 17: If the coefficients of (r – 5)th and (2r – 1)th terms in the expansion of (1 + x)34 are equal, find r.
Answer:
Given:
In the expansion of $(1+x)^{34}$, the coefficients of the $(r-5)^{\text{th}}$ and $(2r-1)^{\text{th}}$ terms are equal.
Solution:
The coefficient of the $k^{\text{th}}$ term in $(1+x)^n$ is $^nC_{k-1}$.
Coefficient of $(r-5)^{\text{th}}$ term = $^{34}C_{r-6}$.
Coefficient of $(2r-1)^{\text{th}}$ term = $^{34}C_{2r-2}$.
Given they are equal: $^{34}C_{r-6} = {^{34}}C_{2r-2}$.
Using the property $^nC_a = ^nC_b \implies a=b$ or $a+b=n$.
Case 1: $r-6 = 2r-2 \implies r = -4$. This is not possible as term numbers must be positive.
Case 2: $(r-6) + (2r-2) = 34 \implies 3r - 8 = 34 \implies 3r = 42 \ $$ \implies r = 14$.
For $r=14$, the terms are the 9th and 27th. The coefficients are $^{34}C_8$ and $^{34}C_{26}$. Since $^{34}C_8 = {^{34}}C_{34-8} = {^{34}}C_{26}$, this solution is valid.
Therefore, $r=14$.
Miscellaneous Exercise on Chapter 8
Question 1. Find a, b and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.
Answer:
Given:
In the expansion of $(a+b)^n$:
First term, $T_1 = {^nC_0}a^n = a^n = 729$. ...(i)
Second term, $T_2 = {^nC_1}a^{n-1}b = na^{n-1}b = 7290$. ...(ii)
Third term, $T_3 = {^nC_2}a^{n-2}b^2 = \frac{n(n-1)}{2}a^{n-2}b^2 = 30375$. ...(iii)
Solution:
Step 1: Find n.
Divide equation (ii) by (i): $\frac{na^{n-1}b}{a^n} = \frac{7290}{729} \implies n\frac{b}{a} = 10$. ...(iv)
Divide equation (iii) by (ii): $\frac{\frac{n(n-1)}{2}a^{n-2}b^2}{na^{n-1}b} = \frac{30375}{7290} = \frac{25}{6}$.
$\frac{n-1}{2} \cdot \frac{b}{a} = \frac{25}{6}$. ...(v)
From (iv), $\frac{b}{a} = \frac{10}{n}$. Substitute this into (v):
$\frac{n-1}{2} \cdot \frac{10}{n} = \frac{25}{6} \implies \frac{5(n-1)}{n} = \frac{25}{6} \implies \frac{n-1}{n} = \frac{5}{6}$.
$6(n-1)=5n \implies 6n-6=5n \implies n=6$.
Step 2: Find a and b.
Substitute $n=6$ into (iv): $6\frac{b}{a} = 10 \implies \frac{b}{a} = \frac{10}{6} = \frac{5}{3}$. So, $b=\frac{5}{3}a$.
Substitute $n=6$ into (i): $a^6 = 729$. Since $3^6 = 729$, we get $a=3$.
Now find $b$: $b = \frac{5}{3}a = \frac{5}{3}(3) = 5$.
Therefore, $a=3, b=5, n=6$.
Question 2. Find a if the coefficients of x2 and x3 in the expansion of (3 + ax)9 are equal.
Answer:
Given:
In the expansion of $(3 + ax)^9$, the coefficients of $x^2$ and $x^3$ are equal.
Solution:
The general term in the expansion of $(3+ax)^9$ is $T_{r+1} = {^9C_r} (3)^{9-r} (ax)^r = {^9C_r} 3^{9-r} a^r x^r$.
The coefficient of $x^r$ is ${^9C_r} 3^{9-r} a^r$.
Coefficient of $x^2$ (for r=2):
Coefficient = ${^9C_2} 3^{9-2} a^2 = {^9C_2} 3^7 a^2$.
Coefficient of $x^3$ (for r=3):
Coefficient = ${^9C_3} 3^{9-3} a^3 = {^9C_3} 3^6 a^3$.
Given that the coefficients are equal:
${^9C_2} 3^7 a^2 = {^9C_3} 3^6 a^3$.
Assuming $a \neq 0$, we can divide by $3^6 a^2$:
${^9C_2} \cdot 3 = {^9C_3} \cdot a$.
$a = \frac{3 \cdot {^9C_2}}{^9C_3} = 3 \cdot \frac{9!/(2!7!)}{9!/(3!6!)} = 3 \cdot \frac{3!6!}{2!7!} = 3 \cdot \frac{3 \cdot 2! \cdot 6!}{2! \cdot 7 \cdot 6!} = 3 \cdot \frac{3}{7} = \frac{9}{7}$.
Therefore, $a = \frac{9}{7}$.
Question 3. Find the coefficient of x5 in the product (1 + 2x)6 (1 – x)7 using binomial theorem.
Answer:
To Find:
The coefficient of $x^5$ in the product $(1 + 2x)^6 (1 – x)^7$.
Solution:
First, we write out the expansions for both terms:
$(1+2x)^6 = 1 + 6(2x) + 15(2x)^2 + 20(2x)^3 + 15(2x)^4 + 6(2x)^5 + (2x)^6 \ $$ = 1 + 12x + 60x^2 + 160x^3 + 240x^4 + 192x^5 + 64x^6$.
$(1-x)^7 = 1 - 7x + 21x^2 - 35x^3 + 35x^4 - 21x^5 + \dots$.
To get the term with $x^5$ in the product, we multiply terms from each expansion whose powers of 'x' sum to 5:
- (Constant from 1st) $\times$ ($x^5$ from 2nd): $(1)(-21x^5) = -21x^5$.
- ($x^1$ from 1st) $\times$ ($x^4$ from 2nd): $(12x)(35x^4) = 420x^5$.
- ($x^2$ from 1st) $\times$ ($x^3$ from 2nd): $(60x^2)(-35x^3) = -2100x^5$.
- ($x^3$ from 1st) $\times$ ($x^2$ from 2nd): $(160x^3)(21x^2) = 3360x^5$.
- ($x^4$ from 1st) $\times$ ($x^1$ from 2nd): $(240x^4)(-7x) = -1680x^5$.
- ($x^5$ from 1st) $\times$ (Constant from 2nd): $(192x^5)(1) = 192x^5$.
The total coefficient of $x^5$ is the sum of these individual coefficients:
$-21 + 420 - 2100 + 3360 - 1680 + 192 = 171$.
The coefficient is 171.
Question 4. If a and b are distinct integers, prove that a – b is a factor of an – bn , whenever n is a positive integer.
[Hint: write an = (a – b + b)n and expand]
Answer:
To Prove:
$(a - b)$ is a factor of $(a^n - b^n)$ for any positive integer $n$.
Proof:
We write $a = (a - b) + b$.
Then $a^n = ((a-b) + b)^n$.
Using the Binomial Theorem to expand this expression:
$a^n = {^nC_0}(a-b)^n + {^nC_1}(a-b)^{n-1}b + \dots + {^nC_{n-1}}(a-b)b^{n-1} + {^nC_n}b^n$.
$a^n = (a-b)^n + n(a-b)^{n-1}b + \dots + n(a-b)b^{n-1} + b^n$.
Now, subtract $b^n$ from both sides:
$a^n - b^n = (a-b)^n + n(a-b)^{n-1}b + \dots + n(a-b)b^{n-1}$.
Every term on the right-hand side has a factor of $(a-b)$. We can factor it out:
$a^n - b^n = (a-b) \left[ (a-b)^{n-1} + n(a-b)^{n-2}b + \dots + nb^{n-1} \right]$.
Let $K = \left[ (a-b)^{n-1} + n(a-b)^{n-2}b + \dots + nb^{n-1} \right]$. Since $a, b, n$ are integers, $K$ is also an integer.
So, $a^n - b^n = (a-b)K$.
This shows that $(a-b)$ is a factor of $(a^n - b^n)$.
Hence, proved.
Question 5. Evaluate $(\sqrt{3} + \sqrt{2})^6 - (\sqrt{3} - \sqrt{2})^6$ .
Answer:
To Evaluate:
$(\sqrt{3} + \sqrt{2})^6 - (\sqrt{3} - \sqrt{2})^6$.
Solution:
Let $a = \sqrt{3}$ and $b = \sqrt{2}$. The expression is $(a+b)^6 - (a-b)^6$.
When we subtract the expansion of $(a-b)^6$ from $(a+b)^6$, the terms with even powers of $b$ cancel out, and the terms with odd powers of $b$ are doubled.
$(a+b)^6 - (a-b)^6 = 2 \left[ {^6C_1}a^5b^1 + {^6C_3}a^3b^3 + {^6C_5}a^1b^5 \right]$.
The coefficients are $^6C_1=6, ^6C_3=20, ^6C_5=6$.
$= 2 \left[ 6(\sqrt{3})^5(\sqrt{2}) + 20(\sqrt{3})^3(\sqrt{2})^3 + 6(\sqrt{3})(\sqrt{2})^5 \right]$.
$(\sqrt{3})^5 = 9\sqrt{3}$, $(\sqrt{3})^3=3\sqrt{3}$.
$(\sqrt{2})^5 = 4\sqrt{2}$, $(\sqrt{2})^3=2\sqrt{2}$.
$= 2 \left[ 6(9\sqrt{3})(\sqrt{2}) + 20(3\sqrt{3})(2\sqrt{2}) + 6(\sqrt{3})(4\sqrt{2}) \right]$.
$= 2 \left[ 54\sqrt{6} + 120\sqrt{6} + 24\sqrt{6} \right]$.
$= 2 \left[ (54+120+24)\sqrt{6} \right] = 2[198\sqrt{6}] = 396\sqrt{6}$.
Therefore, the value is $396\sqrt{6}$.
Question 6. Find the value of $(a^2 + \sqrt{a^2 - 1})^4 + (a^2 - \sqrt{a^2 - 1})^4$ .
Answer:
To Find:
The value of $(a^2 + \sqrt{a^2 - 1})^4 + (a^2 - \sqrt{a^2 - 1})^4$.
Solution:
Let $x = a^2$ and $y = \sqrt{a^2 - 1}$. The expression is in the form $(x+y)^4 + (x-y)^4$.
We use the Binomial Theorem to expand $(x+y)^4$ and $(x-y)^4$.
$(x+y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4$.
$(x-y)^4 = x^4 - 4x^3y + 6x^2y^2 - 4xy^3 + y^4$.
Adding the two expansions, the terms with odd powers of $y$ cancel out:
$(x+y)^4 + (x-y)^4 = 2(x^4 + 6x^2y^2 + y^4)$.
Now, substitute back $x=a^2$ and $y=\sqrt{a^2-1}$:
$= 2 \left[ (a^2)^4 + 6(a^2)^2(\sqrt{a^2-1})^2 + (\sqrt{a^2-1})^4 \right]$.
$= 2 \left[ a^8 + 6a^4(a^2-1) + (a^2-1)^2 \right]$.
$= 2 \left[ a^8 + 6a^6 - 6a^4 + (a^4 - 2a^2 + 1) \right]$.
$= 2 \left[ a^8 + 6a^6 - 5a^4 - 2a^2 + 1 \right]$.
$= 2a^8 + 12a^6 - 10a^4 - 4a^2 + 2$.
The value is $2a^8 + 12a^6 - 10a^4 - 4a^2 + 2$.
Question 7. Find an approximation of (0.99)5 using the first three terms of its expansion.
Answer:
To Find:
An approximation of $(0.99)^5$ using the first three terms of its binomial expansion.
Solution:
We write $0.99$ as $(1 - 0.01)$. The expression is $(1 - 0.01)^5$.
Using the Binomial Theorem for $(a-b)^n$ with $a=1, b=0.01, n=5$.
The first three terms are:
$T_1 = {^5C_0}(1)^5 = 1$.
$T_2 = -{^5C_1}(1)^4(0.01) = -5 \times 0.01 = -0.05$.
$T_3 = +{^5C_2}(1)^3(0.01)^2 = 10 \times 0.0001 = 0.001$.
The approximation is the sum of these three terms:
Approximation = $1 - 0.05 + 0.001 = 0.95 + 0.001 = 0.951$.
Therefore, the approximation is 0.951.
Question 8. Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of $\left( \sqrt [4] {2} + \frac{1}{\sqrt [4] {3}} \right)^n$ is $\sqrt{6} : 1$ .
Answer:
Given:
In the expansion of $\left( 2^{1/4} + 3^{-1/4} \right)^n$, the ratio of the 5th term from the beginning to the 5th term from the end is $\sqrt{6}:1$.
Solution:
Let $a = 2^{1/4}$ and $b = 3^{-1/4}$. The expansion is $(a+b)^n$.
5th term from beginning ($T_5$) = $^nC_4 a^{n-4} b^4$.
5th term from the end is the $(n-5+2) = (n-3)$-th term from the beginning. Its index is $r = n-4$.
Term = $^nC_{n-4} a^{n-(n-4)} b^{n-4} = {^nC_4} a^4 b^{n-4}$.
The ratio is $\frac{T_5(\text{begin})}{T_5(\text{end})} = \frac{^nC_4 a^{n-4} b^4}{^nC_4 a^4 b^{n-4}} = \frac{a^{n-8}}{b^{n-8}} = \left(\frac{a}{b}\right)^{n-8} = \sqrt{6}$.
$\frac{a}{b} = \frac{2^{1/4}}{3^{-1/4}} = 2^{1/4} \cdot 3^{1/4} = (2 \cdot 3)^{1/4} = 6^{1/4}$.
So, $\left(6^{1/4}\right)^{n-8} = 6^{1/2}$.
$6^{\frac{n-8}{4}} = 6^{\frac{1}{2}}$.
Equating the exponents: $\frac{n-8}{4} = \frac{1}{2} \implies n-8=2 \implies n=10$.
Therefore, $n=10$.
Question 9. Expand using Binomial Theorem $\left(1+ \frac{x}{2} -\frac{2}{x}\right)^{4}\;,\; x\neq0$
Answer:
To Expand:
$\left(1+ \frac{x}{2} -\frac{2}{x}\right)^{4}$.
Solution:
We group the terms to apply the Binomial Theorem. Let $a = 1$ and $b = (\frac{x}{2} - \frac{2}{x})$.
The expansion is $(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$.
$= 1^4 + 4(1)^3\left(\frac{x}{2} - \frac{2}{x}\right) + 6(1)^2\left(\frac{x}{2} - \frac{2}{x}\right)^2 + 4(1)\left(\frac{x}{2} - \frac{2}{x}\right)^3 + \left(\frac{x}{2} - \frac{2}{x}\right)^4$.
$= 1 + 4\left(\frac{x}{2} - \frac{2}{x}\right) + 6\left(\frac{x^2}{4} - 2 + \frac{4}{x^2}\right) + 4\left(\frac{x^3}{8} - \frac{3x}{2} + \frac{6}{x} - \frac{8}{x^3}\right) \ $$ + \left(\frac{x^4}{16} - x^2 + 6 - \frac{16}{x^2} + \frac{16}{x^4}\right)$.
$= 1 + 2x - \frac{8}{x} + \frac{3x^2}{2} - 12 + \frac{24}{x^2} + \frac{x^3}{2} - 6x + \frac{24}{x} - \frac{32}{x^3} + \frac{x^4}{16} - x^2 + 6 \ $$ - \frac{16}{x^2} + \frac{16}{x^4}$.
Combining like terms:
$= \frac{x^4}{16} + \frac{x^3}{2} + (\frac{3}{2}-1)x^2 + (2-6)x + (1-12+6) + (-\frac{8}{x}+\frac{24}{x}) \ $$ + (\frac{24}{x^2}-\frac{16}{x^2}) - \frac{32}{x^3} + \frac{16}{x^4}$
$= \frac{x^4}{16} + \frac{x^3}{2} + \frac{x^2}{2} - 4x - 5 + \frac{16}{x} + \frac{8}{x^2} - \frac{32}{x^3} + \frac{16}{x^4}$.
The expansion is $\frac{x^4}{16} + \frac{x^3}{2} + \frac{x^2}{2} - 4x - 5 + \frac{16}{x} + \frac{8}{x^2} - \frac{32}{x^3} + \frac{16}{x^4}$.
Question 10. Find the expansion of (3x2 – 2ax + 3a2 )3 using binomial theorem
Answer:
To Expand:
$(3x^2 – 2ax + 3a^2)^3$.
Solution:
Let $u = 3x^2 + 3a^2$ and $v = -2ax$. The expression is $(u+v)^3$.
$(u+v)^3 = u^3 + 3u^2v + 3uv^2 + v^3$.
Term 1: $u^3 = (3(x^2+a^2))^3 = 27(x^6 + 3x^4a^2 + 3x^2a^4 + a^6) = 27x^6 \ $$ + 81a^2x^4 + 81a^4x^2 + 27a^6$.
Term 2: $3u^2v = 3(3(x^2+a^2))^2(-2ax) = 3 \cdot 9(x^4+2x^2a^2+a^4)(-2ax) \ $$ = -54ax(x^4+2x^2a^2+a^4) = -54ax^5 - 108a^3x^3 - 54a^5x$.
Term 3: $3uv^2 = 3(3(x^2+a^2))(-2ax)^2 = 9(x^2+a^2)(4a^2x^2) \ $$ = 36a^2x^2(x^2+a^2) = 36a^2x^4 + 36a^4x^2$.
Term 4: $v^3 = (-2ax)^3 = -8a^3x^3$.
Combining all terms:
$(27x^6 + 81a^2x^4 + 81a^4x^2 + 27a^6) + (-54ax^5 - 108a^3x^3 - 54a^5x) \ $$ + (36a^2x^4 + 36a^4x^2) + (-8a^3x^3)$.
Grouping by powers of $x$:
$27x^6 - 54ax^5 + (81+36)a^2x^4 + (-108-8)a^3x^3 + (81+36)a^4x^2 \ $$ - 54a^5x + 27a^6$.
$= 27x^6 - 54ax^5 + 117a^2x^4 - 116a^3x^3 + 117a^4x^2 - 54a^5x + 27a^6$.
The expansion is $27x^6 - 54ax^5 + 117a^2x^4 - 116a^3x^3 + 117a^4x^2 \ $$ - 54a^5x + 27a^6$.